

рН

ORP

Conductivity

Resistivity

Total Dissolved Solids Dissolved Oxygen

Salinity

ELECTRODES

www.horiba-laqua.com

LAQUA Electrode Technology

Born from the fusion of our technical expertise and state-of-the-art manufacturing

As a leading pH electrode manufacturer, HORIBA uses the latest technology for all your measurement needs.

Since the development of Japan's first glass electrode for pH meter, HORIBA has focused on continually improving our electrode technology, especially in materials and manufacturing. HORIBA is committed to continually explore and employ groundbreaking solutions in manufacturing next-generation electrodes so that we always provide you with the newest and best electrodes.

pH Electrode			3-in-1 ELECTRODES									
					PLASTIC			STANDARD ToupH	LONG ToupH	MICRO ToupH	SLEEVE ToupH	
Selec	ction (auiae	9651-10D / 9652-10D	9625-10D	9630-10D	9631-10D	9632-10D	9615S-10D	9680S-10D	9618S-10D	9681S-10D	1
	Applicable to	emperature	0-60/0-80	0-100	0-100	0-60	0-100	0-100	0-100	0-60	0-60	
Specification	range (°C) Diameter (mi	m)	16	16	16	16	16	12	8	3	12	
	Length (mm)		150	150	150	155	150	198	283	185	203	
pH - San	nole Con	ditions	Ī									
		Normal (over 100 mS/m)	•	•	•	•	•	•	•	•	•	
		Low (approx.10 ~100 mS/m			•						0	
	Conductivity	Very low (approx.			0						0	
		5 ~100 mS/m High (approx.										
Aqueous	Ctlli-li	5 S/m)	0	0	0	0	0	0	0		•	
Solution		ne (pH 10-12) ty (pH 0-2) * Except					•	•	0		0	
	HF sample	hange (within 50°C)	•	•	•	•	•	•				
		ty (approx. 5 Pa·S)									•	
	Containing n							0	0	0	0	
	solvent Suspension							0	0	0	•	
Solid/	Inside											
Semisolid	Surface											
	Microtube/p	late (> 50 µL)								•		T
	Ampule	> ø4 mm								•		
	Micro contai								0	•		
Sample	Tube	ID:13 mm, L:100 ~ 150 mm							•			
Containers	Beaker	10 mL ~ 1 L	•	<u> </u>	•	•	•	•	0	0	0	
	Large contai Petri dish	ner (> 1 L)	0	0	0	0	0	0	•			4
	Droplet											
						1		1			I	
	Pure/ion-exc (approx. 0.1) water (approx	mS/m)/ Distilled						0				
Water	Tap/drinking	water (approx.	0	0	•			0			0	
Water	10 mS/m) Surface wate	er	Ü		•			0			0	1
	Pharmaceuti		0	0	0			0			0	
		l water/acid rain ng acid (Except				•		•			0	1
Chemical	HF sample) Hydrofluoric	acid				•					U	
reagent/	Surfactant	doid						0			•	1
solvent	Water-based							0			•	
	Dye/coloring										•	
	Medicinal pr	aining sample eparation						0		0	<u> </u>	
Pharmaceutical/ biological									0	•		
sample	Tris buffer							•		0	0	
	Suspension Agar mediun							0			•	4
	Jam	<u>'</u>						0			•	
	Meat/fish/Fr Dough	ruit/vegetable/										
Food	Honey											
	Cheese/butt	er										
	Yogurt Beer		0	0	0			0			<u> </u>	4
Beverage/	Milk/Carbon	ated drink/juice/	U					0			•	
seasoning	sauce/soy sa Mayonnaise,							0			•	4
-	Beauty crear							0			0	
Cosmetic/ lotion		ampoo/Hairdye						0			•	1
iouoli	Emulsified li	quid						0			0	

				-	3			~53		
	111				-	Fry Jrt	6			//
1		12.10					C.	J. Comment		200
111	1					*	•		1	
1.63								9	The same of the sa	
					СОМВІІ	NATION ELECT	TRODES			ISFET ELECTROD
SLEEVE		NEEDLE	PLASTIC	STANDARD ToupH	MICRO ToupH	SLEEVE ToupH	LONG	LONG ToupH	FLAT	GENERAL
6367-10E 0-60	0 6377-10D 0-60	6252-10D 0-60	9425-10C 0-100	9415-10C 0-100	9418-10C 0-60	9481-10C 0-60	6069-10C 0-60	9480-10C 0-100	6261-10C 0-50	0040-10D 0-60
12	12	12	16	12	3	12	3	8	12	16
150	150	150	150	198	185	203	291	283	150	190
	•	•	•	•	•	•	•	•	•	•
•	•					0				
	•					0				
			0	0		•		0		
0				0		0		0		
			•	•						
0	•		•			•				
0	•			0	0	○●		0		0
		0		O	U			U	_	
										•
					•		0			
					•		0	0		
0	0	0	•	•	0	0	O	• O	0	0
	O O		0	Ö	0	0	Ü	•		
									•	•
			<u> </u>							
	•			0						
	•		0	0		0				
	0		0	0		0				
				•		0				
	0			0		•				
	0			0		•				
0	0			0	0	•				
	0	0				0		0		
	•			O	Ö	0				
						•			•	•
	0	OIO		0		•			0	(surface)
										O(surface)
0		0	0	0		0			0	(surface)
0	•		0	0		•				(surrace)
0	0			0		•				
	0	0		0		•				
	0			0		•				
	•			0		0				Can be measu

Expertise in Manufacturing

Sophisticated processing technology

HORIBA's in-house expertise in the manufacture of electrodes is the accumulation of more than 60 years of experience. Our sophisticated electrode processing technology provides flexibility in designing various shapes of the electrode bulb and different structural designs of the electrodes.

Thick membrane technology

Miniaturization Award (Japan)

Fast response & highly accurate

HORIBA's glass moulding technology allows the manufacture of tougher pH glass bulbs.

Unique flat electrode design as well as 3mm diameter micro-electrode with integrated temperature sensor (US Patent No. 7314541/ China Patent No. ZL0315796)

ToupH glass bulb does not compromise responsiveness and sensitivity (US Patent No. 8262877). Specially designed electrodes are available for hydrofluoric acid & strong alkaline application.

Double-junction electrodes

Convenient slider

Built-in clip for hooking onto electrode stand arm

All HORIBA pH combination electrodes are double-junction electrodes. Flexible to use in a wide-range of applications.

Refillable electrodes are equipped with a slider to open or close the refilling port easily.

Top housing of electrodes is designed with a built-in clip to hook onto HORIBA's electrode stands.

ORP Electrode Model Part No. Material Temp. Range (°C) Application 9300-10D 3014046710 Pt / Glass 0 - 60 Waterproof; Platinum on the flat tip allows measurement of small volume samples.

Ion Selecti	ve Electrode	es (ISEs)				
Model	Part No.	Combination ISE	Temp. Range (°C)	Measurement Range	Replacement Tip	Part No.
5002S-10C	3200698386	Ammonia (NH ₃)	0 - 50	0.01 - 18,000 mg/L NH ₄ +	NH ₃ Membrane Caps	3200705774
6583S-10C	3200697410	Calcium (Ca2+)	0 - 50	0.4 - 40,080 mg/L Ca ²⁺	7683S	3200697414
6560S-10C	3200697407	Chloride (Cl-)	0 - 50	0.35 - 35,000 mg/L Cl ⁻	7660S	3200697411
6561S-10C	3200693774	Fluoride (F-)	0 - 50	0.02 - 19,000 mg/L F ⁻	7661S	3200693606
6581S-10C	3200697408	Nitrate (NO ₃ -)	0 - 50	0.62 - 62,000 mg/L NO ₃ -	7681S	3200697412
6582S-10C	3200697409	Potassium (K+)	0 - 50	0.39 - 39,000 mg/L K+	7682S	3200697413

Conductivi	ity Cells						
Туре	Model	Part No.	Temp. Range (°C)	Cell Constant	Measurement Range	Application	
	3551-10D	3014081712	0 - 60	0.1 cm ⁻¹	0.1 µS/cm - 10 mS/cm	Low conductivity water (e.g.,	
	3551-10D	3014081712	0 - 60	10 m ⁻¹	10 μS/m - 1 S/m	deionized, distilled)	
	9382-10D	3014046709	0 - 80	1 cm ⁻¹	1 μS/cm - 100 mS/cm	General purpose use; Waterproof	
	9362-100	3014046709	0 - 80	100 m ⁻¹	0.1 mS/m - 10 S/m	General purpose use; waterproof	
Culamarailala	9383-10D	3200780927	0.00	1 cm ⁻¹	1 μS/cm - 100 mS/cm	Canaral nurnaga uga Matarara af	
Submersible	9363-10D	3200760927	0 - 80	100 m ⁻¹	0.1 mS/m - 10 S/m	General purpose use; Waterproof	
	3552-10D	2014001545	0 - 100	1 cm ⁻¹	1 μS/cm - 100 mS/cm	Canaral nurnaca usa	
	3552-10D	3014081545	0 - 100	100 m ⁻¹	0.1 mS/m - 10 S/m	General purpose use	
	3553-10D	3014081714	0.60	10 cm ⁻¹	10 μS/cm - 1 S/cm	Lligh and untivity water	
	3553-10D	3014081714	0 - 60	1000 m ⁻¹	1 mS/m - 100 S/m	High conductivity water	
	3561-10D	3014082350	0 - 60	0.1 cm ⁻¹	0.1 µS/cm - 10 mS/cm	Low conductivity water (e.g.,	
	3301-10D	3014062330	0 - 60	10 m ⁻¹	10 μS/m - 1 S/m	deionized, distilled)	
	3562-10D	3014082513	0 - 60	1 cm ⁻¹	1 μS/cm - 100 mS/cm	General purpose use	
Flow	3302-10D	3014002313	0 - 60	100 m ⁻¹	0.1 mS/m - 10 S/m	General purpose use	
FIOW	3573-10C	3014082590	0 - 60	10 cm ⁻¹	10 μS/cm - 1 S/cm	High conductivity water	
	3373-100	3014062390	0 - 60	1000 m ⁻¹	1 mS/m - 100 S/m	Figit colluctivity water	
	3574-10C	3014082592	0 - 60	10 cm ⁻¹	10 μS/cm - 100 mS/cm	Small volume sample (e.g., column	
	3374-100	3014082592	0 - 60	1000 m ⁻¹	1 mS/m - 10 S/m	chromatography)	

[•] Material: All have platinum-platinum black / glass-body, except 9382-10D and 9383-10D (titanium-platinum black / plastic-body).

Dissolved Oxygen Probes											
Type	Model	Part No.	Temp. Range (°C)	Measurement Range	Replacement Tip	Part No.					
Field	9551-20D / 9551-100D	3014047090 / 3014047091	0 - 40	0 - 19.99 mg/L DO	5401	3014072770					
	9552-20D / 9552-50D	3200780939 / 3200780941	0 - 50	0 - 20.00 mg/L DO	5402	3200781553					
Lab	9520-10D	3014046711	0 - 45	0 - 19.99 mg/L DO	7541	3014074145					

pH Combination Electrodes

HORIBA pH Combination electrodes manufactured with 1 meter cable terminating in BNC connector allow these electrodes to be used with any pH meter¹. Enjoy the full spectrum of features and benefits of these electrodes on your existing pH meter¹. (For applications where temperature measurement and compensation is required, please refer to the 3-in-1 pH electrodes).

¹pH meters must have BNC connector

				¹ pH meters must have BNC connector
Model	pH Range	Operating Temperature Range (°C)	Liquid Junction	Application
ToupH Standard Electrode 9415-10C General laboratory application Overall length: 198 in Diameter of probe: 12 in Connector: Bt.	ım	0-100	Ceramic	The electrode offers quick stability and drift reduction. Constructed with responsive glass that is 10X stronger than JIS standards The one-touch refilling port slider allows one-hand operation Waterproof, Pb-free glass Perfect for preparing pH buffers and other aqueous test solutions.
Standard Plastic Electrode 9425-10C General field application Overall length: 150 n Diameter of probe: 16 n Connector: Bl	ım	0-100	Ceramic	The electrode has plastic body, which is ideal for field measurement. Can be submerged up to 1m depth and 30mins (with refilling port closed) Waterproof, Pb-free glass Recommended for field use. For measurement of tap water and drinking water.
ToupH Sleeve Electrode 9481-10C High viscosity application Overall length: 203 n Diameter of probe: 12 n Connector: Bl	ım	0-60	Movable sleeve	The electrode gives stable readings in highly viscous samples. The liquid junction is designed with a movable sleeve that can be cleaned easily and prevents clogging Waterproof, Pb-free glass For measurement of highly viscous samples and samples containing non-aqueous solvents (e.g., cosmetics, paints).
ToupH Micro Electrode 9418-10C Precious trace amount sample Overall length: 185 n Diameter of probe: 3 n Connector: Bl	ım	0-60	Ceramic	The electrode can measure samples as small as 50µL. Compatible with extremely small containers (e.g., micro tubes) Temperature sensor is placed next to the bulb for quick response Waterproof Suitable for low-volume samples and wide range of aqueous solutions.
ToupH Long Electrode 9480-10C For large containers and long test tubes 3200611628 Overall length: 283 n Diameter of probe: 8 n Connector: Bl	0-14	0-100	Ceramic	The long, thin body of the electrode is perfect for large containers and test tubes. • 283mm length, 8mm diameter • Constructed with responsive glass that is 10X stronger than JIS standards • Waterproof, Pb-free glass For measuring samples (e.g., microbial culture fluids) in test tubes and tall beakers.
Long Electrode 6069-10C For very slender test tubes Overall length: 291 in Diameter of probe: 3.15 in Connector: Bit	ım	0-60	Ceramic	The long, thin body of the electrode is perfect for very slender test tubes. • 291mm length, 3mm diameter • Waterproof For measuring samples in slender tubes (e.g., NMR test tube).

	Model	pH Range	Operating Temperature Range (°C)	Liquid Junction	Application
Flat Electrode 6261-10C	Overall length: 150 mm Diameter of probe: 12 mm Connector: BNC	0-12	0-50	Sleeve	The sensor is located on the flat surface of the tip. Measurement can be made from minute amount of moisture on solid sample surface Pure water can be applied for samples with no moisture Waterproof Perfect for measuring samples in shallow containers (e.g., petri dishes) and gelatinous materials (e.g., nutrient agar). For surface measurement of meat, paper, skin, and cloth.

3-in-1 pH Glass Body Electrodes²

HORIBA pH Combination electrodes with an integrated thermistor offer higher accuracy as these electrodes measure temperature concurrently with pH. The pH meter is able to continuously monitor and compensate for temperature effects automatically.

²Only compatible with HORIBA pH meters

				*Only compatible with HORIBA pH meters
Model	pH Range	Operating Temperature Range (°C)	Liquid Junction	Application
ToupH Standard Electrode 9615S-10D General laboratory application Overall length: 198 mm Diameter of probe: 12 mm Connectors: BNC & phono jack	0-14	0-100	Ceramic	The electrode offers quick stability and drift reduction. Constructed with responsive glass that is 10x stronger than JIS standards The one-touch refilling port slider allows one-hand operation Waterproof, Pb-free glass Perfect for preparing pH buffers and other aqueous test solutions.
ToupH Sleeve Electrode 9681S-10D High viscosity application Overall length: 203 mm Diameter of probe: 12 mm Connectors: BNC & phono jack	0-14	0-60	Movable sleeve	The electrode gives stable readings in highly viscous samples. The liquid junction is designed with a movable sleeve that can be cleaned easily and prevents clogging Waterproof, Pb-free glass For measurement of highly viscous samples and samples containing non-aqueous solvents (e.g. cosmetics, paints).
ToupH Micro Electrode 9618S-10D Precious trace amount sample Overall length: 185 mm Diameter of probe: 3 mm Connectors: BNC & phono jack	0-14	0-60	Ceramic	The electrode can measure samples as small as 50µL. Compatible with extremely small containers (e.g. micro tubes) Temperature sensor is placed next to the bulb for quick response Waterproof Suitable for low-volume samples and a wide range of aqueous solutions.
ToupH Long Electrode 9680S-10D For large containers and long test tubes Overall length: 283 mm Diameter of probe: 8 mm Connectors: BNC & phono jack	0-14	0-100	Ceramic	The long, thin body of the electrode is perfect for large containers and test tubes. 283mm length, 8mm diameter Constructed with responsive glass that is 10x stronger than JIS standards Waterproof, Pb-free glass For measuring samples (e.g. microbial culture fluids) in test tubes and tall beakers.
Needle Electrode 6252-10D For food application Overall length: 150 mm Diameter of probe: 12 mm Connectors: BNC & phono jack	0-12	0-60	Ceramic	Needle electrode allows measurement of food samples and aqueous solutions.
Low-Conductivity Electrode 6377-10D For pure water & non-aqueous solvents Overall length: 150 mm Diameter of probe: 12 mm Connectors: BNC & phono jack	0-14	0-60	Movable sleeve	Uses a glass membrane that is highly sensitive to low-conductivity water and non-aqueous solvents.

Model	pH Rang	Operating Temperature Range (°C)	Liquid Junction	Application
Standard Sleeve Electrode 6367-10D Overall length: Diameter Of or phe Connectors: BNC & phe	: 12 mm	0-60	Sleeve	Uses a sleeve at the liquid junction for improved stability and repeatability. For measuring pH at high accuracy.

3-in-1 pH Plastic Body Electrodes²

o iii i pii i idotio body Elec	711 0 01 0 0			² Only compatible with HORIBA pH meters	
Model	pH Range	Operating Temperature Range (°C)	Liquid Junction	Applications	
Gel-filled pH Electrode 9651-10D For Field LAOU 3200642020 Overall len Diameter of pi Connectors: BNC 8	gth: 150 mm robe: 16 mm	0-80	Porous sintered polyethylene	The plastic body of the electrode is filled with gel electrolyte. Less maintenance is needed as refilling is not required. • Can be submerged up to 1m depth of water for 30mins. • Waterproof, Pb-free glass Recommended for field use.	
Gel-filled pH Electrode 9652-10D; 9652-20D For Field 3200786359; 3200786361 Overall len Diameter of pi Connectors: BNC 8	gth: 150 mm robe: 16 mm	0-80	Porous sintered polyethylene	The plastic body of the electrode is filled with gel electrolyte. Less maintenance is needed as refilling is not required. Can be submerged up to 1m depth of water for 30mins. Waterproof, Pb-free glass Recommended for field use.	
	0-14 gth: 150 mm robe: 16 mm	0-100	Ceramic	The electrode has a plastic body which is ideal for field measurement. Can be submerged up to 1m depth of water for 30mins. (with refilling port closed) Waterproof, Pb-free glass Recommended for field use. For measurement of tap water and drinking water.	
	2-12 gth: 155 mm robe: 16 mm	0-60	Ceramic	The electrode can measure 1% hydrofluoric acid solution (at 25°C, immersed at 1min.) for about 1000 times. Rolled glass design for long-term reliable measurement and easy maintenance. Compliant with Japan's Measurement Act Certification Waterproof, Pb-free glass Suitable for drain water measurement after etching process.	
		0-100	Ceramic	The alkali-resistant glass membrane has higher resistance and longer stability (about 5X in 0.1mol/L sodium at 60°C, pH 13) than conventional electrodes. • Waterproof, Pb-free glass Suitable for strong alkali samples such as plating solutions.	
Standard Plastic Electrode 9630-10D For tap water Overall length planeter of processing to connectors: BNC 8		0-100	Ceramic	The electrode can measure samples with low conductivity or buffering capacity. Made of high purity multicomponent lithium series glass Waterproof, Pb-free glass Suitable for tap water measurement and quality control in water purification plant. Recommended to use with cleaning solution 230.	

Metallic Electrode (For ORP Measurement)

Model	Operating Temperature Range (°C)	Electrode Material	Internal Solution	Applications
ORP Electrode 9300-10D Waterproof platinum 3-in-1 type			#200	Waterproof, Distingue on the flat tip allows
LAQUA MA	0-60	Pt / Glass	#300 (KCI)	Waterproof; Platinum on the flat tip allows measurement of small volume samples
3014046710 Overall length: 150 mm Diameter of probe: 12 mm Connectors: BNC & phono jack				

Dissolved Oxygen (DO) Electrode & Tips

HORIBA Dissolved Oxygen (DO) electrodes are galvanic probes with integrated temperature sensors. With galvanic DO probes, calibration can be performed immediately and in air. The HORIBA DO probes use unique and innovative tips which are replaceable. No need to replace membranes or refill electrolytes.

Two models are available: a Laboratory model (9520) that can be used for BOD measurements, and a Field immersible model (9551) housed in a rugged casing available in 2m and 10m cable configurations. The Laboratory 9520 DO probe is fitted with a rotor as well as an adaptor to facilitate BOD measurements.

Dissolved Oxygen Electrodes

Model	Measurement Range	Response Time	Temperature Range (°C)	Features
9520-10D For laboratories	0-19.99mg/L DO	20 seconds (90% response time at constant temperature)	0-45	Waterproof; It operates with the built-in temperature sensor and replaceable DO tip 7541.
3014046711 Overall length: 184 Diameter of probe: 18 Connectors: BNC & phono	mm			
9551-20D; 9551-100D For field immersible type 3014047090; 3014047091 Overall length: 165 Diameter of probe: 32 Connectors: BNC & phono	mm	30 seconds (90% response time at constant temperature)	0-40	Waterproof; It operates with the built-in temperature sensor and replaceable DO tip 5401.
9552-20D; 9552-50D For field immersible type 3200780939; 3200780941 Overall length: 165 Diameter of probe: 30 Connectors: BNC & phono	nm	30 seconds (90% response time at constant temperature)	0-50	Waterproof; It operates with the built-in temperature sensor and replaceable DO tip 5402.

Dissolved Oxygen Electrode Tips

	Model	Description
7541 3014074145	Overall length: 26.5 mm Diameter: 15 mm	Replacement DO tip for 9520-10D
5401 3014072770	100 m	Replacement DO tip for 9551-20D and 9551-100D
5402 3200781553		Replacement DO tip for 9552-20D and 9552-50D

Conductivity Electrode Cells

HORIBA Conductivity cells are available as Submersible type and Flow type, as well as in a variety of cell constants ranging from 0.1 to 10.0.

The HORIBA Conductivity cells are integrated with temperature sensor (except for 3573 & 3574) and the wetted material is Platinum / Titanium, coated with Platinum black. Rugged Titanium allows cell to be used in a wide range of applications, including highly corrosive samples such as concentrated acids and sea water. Maintenance is simple – soak in deionized/demineralized water or with the conditioning solution.

Conductivity Cells (Submersible Type)

Model		Cell Constant	Measurement Range	Temp. Range (°C)	Cell Material	Thermistor	Minimum Sample Volume (ml)	Application
3551-10D	LOO.M	0.1 cm ⁻¹	0.1 μS/cm - 10 mS/cm	0 - 60	Pt-Pt black /	Built-in	50	Low conductivity water (e.g.,
3014081712	Overall length: 175 mm Diameter of probe: 23 mm Connectors: BNC & phono jack	10 m ⁻¹	10 μS/m - 1 S/m		Glass	Dame iii		deionized, distilled)
3552-10D	HOA ME	1 cm ⁻¹	1 μS/cm - 100 mS/cm	0 - 100	Pt-Pt black /	Built-in	15	General
3014081545	Overall length: 150 mm Diameter of probe: 12 mm Connectors: BNC & phono jack	100 m ⁻¹	0.1 mS/m - 10 S/m	0 - 100	Glass	Duilt-III	15	purpose use
3553-10D	IAQUE DE	10 cm ⁻¹	10 μS/cm - 1 S/cm	0 - 60	Pt-Pt black /	Built-in	50	High conductivity
3014081714	Overall length: 175 mm Width of probe: 28 mm Connectors: BNC & phono jack	1000 m ⁻¹	1 mS/m - 100 S/m		Glass			water
9382-10D	1/01/4	1 cm ⁻¹	1 μS/cm - 100 mS/cm	0 - 80	Ti-Pt black /	Built-in	20-30	General purpose use;
3014046709	Overall length: 150 mm Diameter of probe: 16 mm Connectors: BNC & phono jack	100 m ⁻¹	0.1 mS/m - 10 S/m	0 - 00	Plastic	Bulleliii	20-00	Waterproof
9383-10D		1 cm ⁻¹	1 μS/cm - 100 mS/cm		Ti-Pt black /			General
3200780927	Overall length: 150 mm Diameter of probe: 16 mm Connectors: BNC & phono jack	100 m ⁻¹	0.1 mS/m - 10 S/m	0 - 80	80 Plastic	Built-in	20-30	purpose use; Waterproof

Conductivity Cells (Flow Type)

	Model	Cell Constant	Measurement Range	Temp. Range (°C)	Cell Material	Thermistor	Minimum Sample Volume (ml)	Application
3561-10D	I wan be	0.1 cm ⁻¹	0.1 μS/cm - 10 mS/cm	0 - 60	Pt-Pt black / Glass	Built-in	10	Low conductivity water (e.g.,
3014082350	Overall length: 143 mm Diameter of probe: 18 mm Connectors: BNC & phono jack	10 m ⁻¹	10 μS/m - 1 S/m		Glass			deionized, distilled)
3562-10D		1 cm ⁻¹	1 μS/cm - 100 mS/cm	0 - 60	Pt-Pt black /	Built-in	16	General
3014082350	Overall length: 205 mm Diameter of probe: 18 mm Connectors: BNC & phono jack	100 m ⁻¹	0.1 mS/m - 10 S/m	0 00	Glass	Built iii	10	purpose use
3573-10C	MOUA PAR	10 cm ⁻¹	10 μS/cm - 1 S/cm	0 - 60	Pt-Pt black /		4	High conductivity
3014082590	Overall length: 222 mm Diameter of probe: 18 mm Connector: BNC	1000 m ⁻¹	1 mS/m - 100 S/m	0 - 00	Glass	_	4	water
3574-10C		10 cm ⁻¹	10 μS/cm - 100 mS/ cm	0 - 60	Pt-Pt black /		0.25	Small volume sample (e.g.,
3014082592	Overall length: 136 mm Diameter of probe: 66 mm Connector: BNC	1000 m ⁻¹	1 mS/m - 10 S/m	Glass	Glass		0.25	column chromatography)

Combination ISE

lon-selective electrodes are responsive to concentration of particular ions in the test liquid and are variable-potential electrodes. They are used in conjunction with reference electrodes to measure the concentration of particular ions. HORIBA's years of experience and know-how in this field are behind the wide range of ion electrodes we offer.

When measurements are made using an ion meter, calibrating it with various standard solutions will give direct readings of the ion concentration. Note that since volume-detection level changes with temperature, measurements must be taken at a fixed temperature.

Model	Accessories Included	Temp. Range (°C)	Measurement Range	pH Range
Ammonia ion (NH ₃) electrode 5002S-10C 3200698386 Overall length: 161 mm Diameter of probe: 15 mm Connector: BNC	membrane cap, 3pcs 1000mg/L ammonium ion standard solution, 50ml 100mg/L ammonium ion standard solution, 50ml ammonia electrode filling solution, 50ml syringe dropper protective pipe manual	0 - 50	0.01 - 18,000 mg/L NH ₄ + (5 x 10 ⁻⁷ to 1 mol/L NH ₄ +)	pH 12 or more
Calcium ion (Ca ²⁺) electrode 6583S-10C 3200697410 Overall length: 150 mm Diameter of probe: 16 mm Connector: BNC	 calcium electrode tip, 2pcs 1000mg/L calcium ion standard solution, 50ml 100mg/L calcium ion standard solution, 50ml calcium electrode filling solution, 50ml calcium ionic strength adjustor, 50ml syringe dropper protective pipe manual 	0 - 50	0.4 - 40,080 mg/L Ca ²⁺ (10 ⁻⁵ to 1 mol/L Ca ²⁺)	4.0 mg/L (10 ⁻⁴ mol/L) Ca ²⁺ , pH 5 to 11
Chloride ion (Cl ⁻) electrode 6560S-10C 3200697407 Overall length: 150 mm Diameter of probe: 16 mm Connector: BNC	chloride electrode tip 1000mg/L chloride ion standard solution, 50ml 100mg/L chloride ion standard solution, 50ml chloride electrode filling solution, 50ml chloride ionic strength adjustor, 50ml syringe dropper protective pipe water-resistant abrasive sheet manual	0 - 50	0.35 - 35,000 mg/L Cl ⁻ (10 ⁻⁵ to 1 mol/L Cl ⁻)	350 mg/L (10 ⁻² mol/L) Cl ⁻ , pH 3 to 11
Fluoride ion (F ⁻) electrode 6561S-10C 3200693774 Overall length: 150 mm Diameter of probe: 16 mm Connector: BNC	• fluoride electrode tip • 1000mg/L fluoride ion standard solution, 50ml • 100mg/L fluoride ion standard solution, 50ml • fluoride electrode filling solution, 50ml • fluoride ionic strength adjustor, 50ml • syringe • dropper • protective pipe • manual	0 - 50	0.02 - 19,000 mg/L F ⁻ (10 ⁻⁶ to 1 mol/L F ⁻)	0.1 to 1,000 mg/L F ⁻ , pH 5 to 8
Nitrate ion (NO ₃ -) electrode 6581S-10C 3200697408 Overall length: 150 mm Diameter of probe: 16 mm Connector: BNC	nitrate electrode tip, 2pcs 1000mg/L nitrate ion standard solution, 50ml 100mg/L nitrate ion standard solution, 50ml nitrate electrode filling solution, 50ml nitrate ionic strength adjustor, 50ml syringe dropper protective pipe manual	0 - 50	0.62 - 62,000 mg/L NO ₃ - (10 ⁻⁵ to 1 mol/L NO ₃ -)	62 mg/L (10 ⁻³ mol/L) NO ₃ -, pH 3 to 7
Potassium ion (K+) electrode 6582S-10C 3200697409 Overall length: 150 mm Diameter of probe: 16 mm Connector: BNC	potassium electrode tip, 2pcs 1000mg/L potassium ion standard solution, 50ml 100mg/L potassium ion standard solution, 50ml potassium electrode filling solution, 50ml potassium ionic strength adjustor, 50ml syringe dropper protective pipe manual	0 - 50	0.39 - 39,000 mg/L K* (10 ⁻⁵ to 1 mol/L K*)	3.9 mg/L (10 ⁻⁴ mol/L) K ⁺ , pH 5 to 11

11/10			and the same	0 6	c	- 00 - 100
Selection Coefficient	Replacement Tip	Electrode Filling Solution	100mg/L Standard Solution	1000mg/L Standard Solution	Ionic Strength Adjustor	Applications
_	NH ₃ electrode membrane caps 3200705774	500-NH3-IFS 3200697173	500-NH4-SL 3200697172	500-NH4-SH 3200697171	500-NH3-ISA 3200697174	Agriculture, Soil, Power Station Water, Fish Tanks, Sea Water, Waste Water, Plating Baths, Air / Stack Gases and Biological Cultures or Samples
$Fe^{3+} = 0.1, Fe^{2+}, Zn^{2+} = 1, Sr^{2+} = 50$ $Ni^{2+}, Cu^{2+} = 70, Co^{2+} = 350$ $Mn^{2+} = 500, Mg^{2+} = 1,000$ $Na^{+}, K^{+}, Ba^{2+}, NH_{4}^{+} = over 1,000$	7683S 3200697414	500-CA-IFS 3200697177	500-CA-SL 3200697176	500-CA-SH 3200697175	500-CA-ISA 3200697178	Agriculture / Plant Tissue, Soil, Water Softening Systems, Boiler Feed Water, Drinking / Mineral Water, Biological Cultures, Dental / Clinical Analysis and Dairy / Food / Beverages Applications
S ₂ O ₃ ²⁻ , S ²⁻ , I ⁻ , Ag ⁺ , Hg ²⁺ = Not acceptable SCN ⁻ = 0.3, MnO ₄ ⁻ = 0.1 Br = 0.03 NO ₃ ⁻ , F ⁻ , HCO ₃ ⁻ , SO ₄ ²⁻ , PO ₄ ²⁻ = 1,000	7660S 3200697411	500-CL-IFS 3200697169	500-CL-SL 3200697168	500-CL-SH 3200697167	500-CL-ISA 3200697170	Agriculture, River / Tap Water, Plant Tissue, Soils, Boiler Feed Water, Clinical Analysis, Sweat, Urine, Cement, Plating Baths and Dairy / Food / Beverages Samples
Possible interference when multiply-charged ion (ex. Al ³⁺ , Fe ³⁺) coexisted and foamed the complex.	7661S 3200693606	500-F-IFS 3200697165	500-F-SL 3200697164	500-F-SH 3200697163	500-F-TISAB 3200697166	Dental / Toothpaste / Mouth Wash, Drinking / Seawater, Wastewater, Air / Stack Gases, Acids, Soils, Food, Biological Fluids, Plant Tissue, Coal, Carbonated Beverages and Bone
CIO ₄ -, I ⁻ = Not acceptable, Br= 2 NO ₂ -= 3, CI ⁻ = 300 HCO ₃ -, H ₂ PO ₄ -, SO ₄ ²⁻ =over 1000	7681S 3200697412	500-NO3-IFS 3200697181	500-NO3-SL 3200697180	500-NO3- SH 3200697179	500-NO3-ISA 3200697182	Agriculture / Plant Tissue / Fertilizers, Surface / Seawater / Drinking Water, Sewage Effluent, Soils, Meats, Vegetables, Foods / Beverages
Rb ⁺ = 0.4, Cs ⁺ = 3, NH ₄ ⁺ = 70 Li ⁺ , Na ⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ = over 1,000	7682S 3200697413	500-K-IFS 3200697185	500-K-SL 3200697184	500-K-SH 3200697183	500-K-ISA 3200697186	Agriculture / Plant Tissue, Soils, Wastewater, River / Tap Water, Clinical Analysis, Saliva, Serum, Fertilizers, Soils and Wines, Dairy / Foods / Beverages

LAQUA WQ-300 Series Sensor Heads & Cartridges

■ Maintenance-free, gel-filled pH sensor

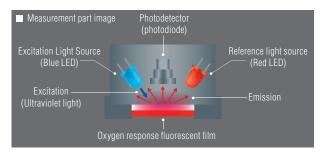
No electrolyte refilling required

- KCl gel electrolyte
- Double junction reference
- Porous sintered polyethylene junction
- Built-in temperature sensor
- Rugged polycarbonate body
- Replaceable pH sensor cartridge
- pH sensor heads with 2m and 5m cables are available

4-Cell conductivity sensor

Wide range of conductivity measurements possible

- From clean water to industrial wastewater, the 4-cell type can measure a variety of samples with different conductivity
- Built-in temperature sensor
- Durable epoxy / carbon body
- Replaceable conductivity sensor cartridge
- Conductivity sensor heads with 2m and 5m cables are available



Optical dissolved oxygen (DO) sensor

Longer usable life with excellent performance

- Easy to handle not affected with sample flow velocity, not sensitive to hydrogen sulfide, DO sensor cap replacement after 1-2 years*
- Built-in temperature sensor
- Comes with replaceable DO sensor cap, air calibration bottle and Stainless Steel DO Sensor Protective Guard
- DO sensor heads with 2m and 5m cables are available

Ion sensor head

Compatible with conventional ion selective electrodes

- Accepts all combination ion selective electrodes with BNC connector
- · Requires sensor head adapter
- Comes with 2m cable

ORP sensor head

Compatible with conventional ORP electrodes

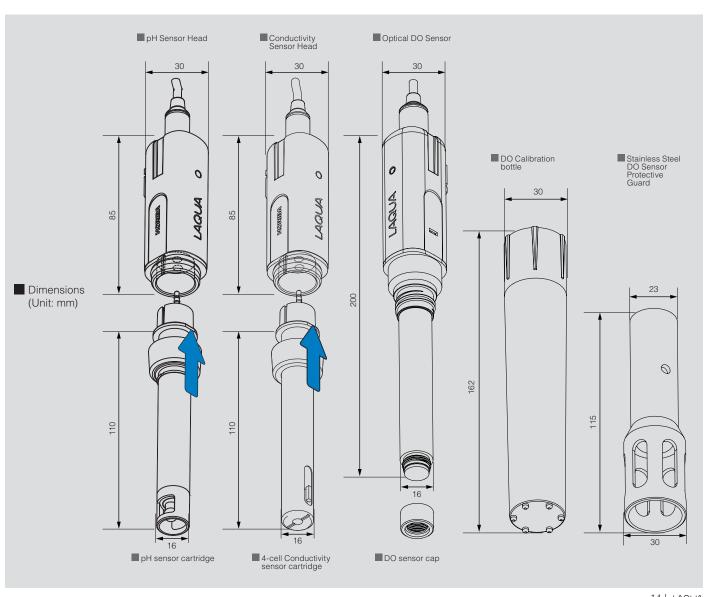
- Accepts 9300-10D and other combination ORP electrodes with BNC connector
- · Requires sensor head adapter
- Comes with 2m cable

LAQUA WQ-300 Series Sensor Specifications

pH Sensor Head pH/mV/Temp (°C/°F)					
Model	300PH-2	300PH-5			
Part No.	3200812206	3200812207			
pH Range	-2.00 to 20.00 pH -2.000 to 20.000 pH				
Resolution	-2.00 to 20.00: 0.01 pH -2.000 to 20.000: 0.001 pH				
Accuracy	-2.00 to 20.00: ±0.01 -2.000 to 20.000: ±0.005				
Calibration Points	Up to 6				
pH Buffer Groups	USA, DIN, NIST, NIST10, Custom				
mV Range	±1000.0 mV				
Resolution	0.1 mV				
Accuracy	±0.1 mV				
Temperature Range	-30.0 to 130.0 °C -22.0 to 266.0 °F				
Resolution	0.1 °C / °F				
Accuracy	±0.5 °C / ±0.9 °F				
Calibration Option	Yes				
Body Material	ABS / Polycarbonate				
Length and Diameter	85 x 30 mm				
Connector	Push-pull				
Cable Length	2 m 5 m				

pH Sensor Cart	ridge pH/mV/Temp (°C/°F)
Model	300-P-C
Part No.	3200786363
pH Range	-2.00 to 20.00 pH -2.000 to 20.000 pH
Temperature Range	0 to 80 °C -32.0 to 176.0 °F
Junction Material	Porous sintered polyethylene
Double Junction	Yes
Temperature Sensor	Built-in
Length and Diameter	110 x 16 mm
Body Material	Polycarbonate, glass bulb

Dissolved Oxygen Senso Model	r DO (mg/L, %) / 300-D-2	O ₂ / Temp (°C/°F) 300-D-5	
Part No.	3200780940	3200780942	
Dissolved Oxygen (DO) Range		.0.00 mg/L 200.0 %	
Resolution	0.01 m	g/L, 0.1%	
Accuracy	±0.2 m	g/L, ±2 %	
Salinity Compensation		ensor / Manual: 0.0 to 40.0 opt	
Barometric Pressure Compensation		ter / Manual: 10.0 to 199.9 Pa	
Calibration Points	Up	to 2	
Oxygen Range	0.0 to	50.0%	
Resolution	0	1.1%	
Accuracy	±C).5%	
Temperature Range		130.0 °C 266.0 °F	
Resolution	0.1 °	°C / °F	
Accuracy	±0.5 °C	/ ±0.9 °F	
Calibration Option	Yes		
Body Material	ABS / Polycarbonate		
Length and Diameter	200 x 16 mm		
Connector	Push-pull		
Cable Length	2 m	5 m	
Sensor cap included		1	


300-D-M
300-D-M
3200781554
0.00 to 20.00 mg/L 0.0 to 200.0 %
0 to 50.0 °C 32.0 to 122.0 °F
10 x 16 mm
PVC, PMMA

Conductivity Ser	nsor Head EC/Sal/T 300-C-2	DS / Res / Temp (°C/°F)				
Part No.	3200784468	3200812202				
Conductivity Range	µS/cm 0.000 to 0.199 0.200 to 1.999 2.00 to 19.99 20.0 to 199.9 200 to 1999 mS/cm 2.00 to 19.99 20.0 to 19.99 20.0 to 19.99 20.0 to 19.99 20.0 to 2000	µS/m 0.0 to 19.9 20.0 to 19.9 200 to 1999 mS/m 2.00 to 19.99 20.0 to 19.99 200 to 1999 S/m 2.00 to 19.99 2.00 to 19.99 2.00 to 200.0				
Resolution	Auto ranging, up to	4 significant digits				
Accuracy		le of each range 6/m): ± 1.5% full scale				
Reference Temperature	15 to	30°C				
Temperature Coefficient	0.00 to 10	0.00 %/°C				
Calibration Points	Up to 4 (Auto) /	Up to 5 (Manual)				
Units		n, S/m				
Salinity Range		30.00 ppt 8.000 %				
Resolution	0.01 ppt	, 0.001 %				
Accuracy	$\pm0.5\%$ of reading or ±0.01 ppt, whichever is greater					
Salinity Curves	NaCl, Seawater (UNESCO 1978)					
Calibration Option	Yes					
Total Dissolved Solids (TDS) Range	0.01 mg/L to 200,000 mg/L					
Resolution		l significant digits				
Accuracy	± 0.5% of reading or ± 0.1 mg/L, whichever is greater					
TDS Curves	, ,	, EN27888, 442, NaCl				
Resistivity Range	Ω•cm 0.1 to 199.9 200 to 1999 κΩ•cm 2.00 to 19.99 20.0 to 19.99 200 to 1999 ΜΩ•cm 2.00 to 19.99 200 to 19.99 200 to 19.99	Ω • m 0.001 to 1.999 2.00 to 19.99 20.0 to 199.9 200 to 1999 kΩ • m 2.00 to 19.99 20.0 to 19.99 20.0 to 199.9 20.0 to 2000				
Resolution	Auto ranging, up to	4 significant digits				
Accuracy	± 0.5% full scale of each range > 200 mS/cm (20.0 S/m): ± 1.5% full scale					
Temperature Range	-30.0 to 130.0 °C -22.0 to 266.0 °F					
Resolution	0.1 °C / °F					
Accuracy	±0.5 °C / ±0.9 °F					
Calibration Option	Υ	es				
Body Material	ABS / Polycarbonate					
Length and Diameter	85 x 30 mm					
Connector	Push	n-pull				
Cable Length	2 m	5 m				

4-Cell Conductivity Sensor Cartridge Model 300-4C-C					
Part No.	3200780928				
Cell Constant	0.172 cm ⁻¹				
Conductivity Range	10 μS/cm to 2000 mS/cm				
Temperature Range	0 to 100 °C 32.0 to 212.0 °F				
Temperature Sensor	Built-in				
Length and Diameter	110 x 16 mm				
Body Material	Epoxy, carbon				

Ion Sensor Hea	d Ion / mV / Temp (°C/°F)
Model	300-1-2
Part No.	3200812203
Ion Range	(mg/L, mmol/L) 0.000 to 0.999, 1.00 to 9.99, 10.0 to 99.9, 100 to 999, 1000 to 9990, 10000 to 99900
Resolution	0.001 minimum, 3 significant digits
Accuracy	±0.1 mV
Calibration Points	Up to 5
mV Range	±1000.0 mV
Resolution	0.1 mV
Accuracy	±0.1 mV
Temperature Range	-30.0 to 130.0 °C -22.0 to 266.0 °F
Resolution	0.1 °C / °F
Accuracy	±0.5 °C / ±0.9 °F
Calibration Option	Yes
Body Material	ABS / Polycarbonate
Length and Diameter	85 x 30 mm
Connector	Push-pull
Cable Length	2 m

ORP Sensor He	ead ORP / Temp (°C/°F) 300-0-2
Part No.	3200812204
ORP Range	-2000 to +2000 mV
Resolution	< ±1000.0 mV: 0.1mV ≥ 1000.0 mV: 1 mV
Accuracy	< ±1000.0 mV: ±0.1 mV ≥ 1000.0 mV: ±1 mV
Calibration Option	Yes
Temperature Range	-30.0 to 130.0 °C -22.0 to 266.0 °F
Resolution	0.1 °C / °F
Accuracy	±0.5 °C / ±0.9 °F
Calibration Option	Yes
Body Material	ABS / Polycarbonate
Length and Diameter	85 x 30 mm
Connector	Push-pull
Cable Length	2 m

501-S NIST pH Buffer Solution Kit

502-S USA pH Buffer Solution Kit

503-S Conductivity Standard Solution Kit

Cleaning Solutions

	lution Kits		
Code	Part No.	Description	Volume
501-S	3999960015	99960015 NIST pH Buffer Solution Kit (pH 4.01, 6.86, 9.18 buffers & 3.33M KCI)	
502-S	3999960016	USA pH Buffer Solution Kit (pH 4.01, 7.00, 10.01 buffers & 3.33M KCI)	250ml each
pH Buffer So	lutions		
Code	Part No.	Description	Volume
500-2	3999960028	pH 1.68 Buffer Solution at 25°C	500ml
500-4	3999960029	pH 4.01 Buffer Solution at 25°C	500ml
500-686	3999960030	pH 6.86 Buffer Solution at 25°C	500ml
500-7	3999960031	pH 7.00 Buffer Solution at 25°C	500ml
500-9	3999960032	pH 9.18 Buffer Solution at 25°C	500ml
500-10	3999960033	pH 10.01 Buffer Solution at 25°C	500ml
500-12	399960034	pH 12.46 Buffer Solution at 25°C	500ml
Conductivity	Standard Solut	ion Kit	
Code	Part No.	Description	Volume
503-S	3999960017	Conductivity Standard Solution Kit (84µS/cm, 1413µS/cm, 12.88mS/cm & 111.8mS/cm)	250ml each
Conductivity	Standard Solut	ions	
Code	Part No.	Description	Volume
500-21	399960035	84 μS/cm Conductivity Standard Solution	500ml
500-22	3999960036	1413 μS/cm Conductivity Standard Solution	500ml
500-23	3999960037	12.88 mS/cm Conductivity Standard Solution	500ml
500-24	399960038	111.8 mS/cm Conductivity Standard Solution	500ml
ORP Powder	s		
Code	Part No.	Description	Volume
160-51	3200043618	89 mV at 25°C (for 250ml solution)	10 sachets/pag
160-22	3200043617	258 mV at 25°C (for 250ml solution)	10 sachets/pac
pH/ORP Elec	trode Filling So	lutions	
Code	Part No.	Description	Volume
525-3	3999960023	3.33M KCI	250ml
300	3200043640	3.33M KCI	250ml
pH Electrode	Cleaning Solut	ions	
Code	Part No.	Description	Volume
220	3014028653	For removing inorganic residues from glass membrane and liquid junction	2 x 50ml
	I	momorano ana liquia junction 🔻 🤍	
230	3200530494	For removing inorganic and organic residues from glass membrane (30ml Solution A & 100ml Solution B)	30ml & 100m

Chloride Ion Electrode Solutions

Fluoride Ion Electrode Solutions

Potassium Ion Electrode Solutions

Ammonia Ion Electrode Solutions

Nitrate Ion Electrode Solutions

Ion Standard Solutions					
Code	Part No.	Description	Volume		
500-NH4-SH	3200697171	1000 mg/L Ammonium Ion Standard Solution	500ml		
500-NH4-SL	3200697172	100 mg/L Ammonium Ion Standard Solution	500ml		
500-CA-SH	3200697175	1000 mg/L Calcium Ion Standard Solution	500ml		
500-CA-SL	3200697176	100 mg/L Calcium Ion Standard Solution	500ml		
500-CL-SH	3200697167	1000 mg/L Chloride Ion Standard Solution	500ml		
500-CL-SL	3200697168	100 mg/L Chloride Ion Standard Solution	500ml		
500-F-SH	3200697163	1000 mg/L Fluoride Ion Standard Solution	500ml		
500-F-SL	3200697164	100 mg/L Fluoride Ion Standard Solution	500ml		
500-NO3-SH	3200697179	1000 mg/L Nitrate Ion Standard Solution	500ml		
500-NO3-SL	3200697180	100 mg/L Nitrate Ion Standard Solution	500ml		
500-K-SH	3200697183	1000 mg/L Potassium Ion Standard Solution	500ml		
500-K-SL	3200697184	100 mg/L Potassium Ion Standard Solution	500ml		
Ionic Strength	Ionic Strength Adjustors				
Code	Part No.	Description	Volume		
500-NH3-ISA	3200697174	Ammonia Ionic Strength Adjustor 💠 🕸	500ml		
500-CA-ISA	3200697178	Calcium Ionic Strength Adjustor	500ml		
500-CL-ISA	3200697170	Chloride Ionic Strength Adjustor	500ml		
500-F-TISAB	3200697166	Fluoride Ionic Strength Adjustor	500ml		
500-NO3-ISA	3200697182	Nitrate Ionic Strength Adjustor	500ml		
500-K-ISA	3200697186	Potassium Ionic Strength Adjustor	500ml		
Ion Selective I	Electrode Fillin	g Solutions			
Code	Part No.	Description	Volume		
500-NH3-IFS	0000007170		F001		
300-141 13-11 3	3200697173	Ammonia Electrode Filling Solution	500ml		
500-CA-IFS	3200697173	Calcium Electrode Filling Solution	500ml		
		9			
500-CA-IFS	3200697177	Calcium Electrode Filling solution	500ml		
500-CA-IFS 500-CL-IFS	3200697177 3200697169	Calcium Electrode Filling solution Chloride Electrode Filling Solution	500ml 500ml		

	<u> </u>				
Accessories					
Code	Part No.	Description			
FA-70A	3200644455	Integrated Electrode Stand (Height: 338mm) for bench meter			
FA-70S	3200382557	Adjustable, free-standing electrode stand (Height: 384 mm)			
FA-70L	3200382560	Long, free-standing electrode stand (Height: 450-650mm)			
DP-70S	3200528474	Electrode stand for 100 Series and D-70, ES-70, OM-70 Series handheld meters (Height: 400mm)			
- 1273	3200373991	Arm for electrode stand FA-70A, FA-70S, & FA-70L			
	3200373961	Electrode holders, 2pcs/pack (for mounting electrode with round cap on electrode stand arm)			
	3200382477	Electrode protection caps, 3pcs/pack (for 9615S-10D, 9618S-10D, 9681S-10D pH electrode)			
	3200043508	Electrode protection caps, 5pcs/pack (for plastic pH electrodes)			
	3200382482	Electrode protection cap for long electrode (for 9680S-10D, 9480-10C pH Electrode)			
	3200044409	Clear pH sensor tip guard (for plastic pH electrodes 9651/9652, 9625, 9630 etc.), 5pcs/pack			
	3200828646	Black pH sensor tip guard (for 200 series, 300 series), 3pcs/pack			
	3200779640	Electrode adapter			
300-BNC	3200821465	Sensor head adapter (for WQ-300 Series sensor heads)			

Technical Tip

pH Electrode Care and Maintenance Procedures

Your pH electrode will eventually reach the end of its useful life as its performance naturally degrades over time. To maximize the performance of your pH electrode and extend its life span, proper care and regular maintenance are equally required.

■ Part no. 3014028653 Cleaning Solution 220 - contains 10% thiourea and 1% hydrochloric acid (HCl) for removing inorganic residues on glass membrane and junction

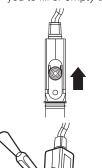
Part no. 3999960031 500-7 pH 7.00 buffer

■ Mild detergent

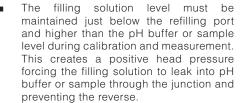
■ Part no. 3200366771
Cleaning Solution 250 contains less than 0.5%
enzyme protease, less
than 0.1% sodium azide,
and other ingredients
(See SDS) for removing
protein residues on glass
membrane and junction

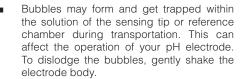
Part no. 3999960029 500-4 pH 4.00 buffer

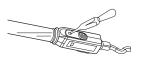
■ Soft lint-free tissue


Part no. 3999960023 525-3
 3.33M KCl pH electrode filling solution (for liquid-filled electrodes)

Clean water (e.g., tap, distilled or deionized water) in a squirt bottle Refer to the safety data sheet (SDS) of the chemical solution to be used in cleaning and wear the appropriate personal protective equipment for safe handling. Download the SDSs of HORIBA solutions at www.horiba-laqua.com.


Refilling


The pH electrode may be filled with either an ionic liquid solution (refillable or liquid-filled pH electrode) or ionic gel solution (sealed or gel-filled pH electrode). Gel-filled pH electrodes do not require routine refilling and typically require less maintenance than liquid-filled electrodes. Liquid-filled pH electrodes are constructed with refilling port, which is securely covered with a slider. The refilling port allows you to fill or empty the reference chamber.

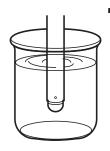

Up to

To top up or re-fill the reference chamber of liquid-filled pH electrode, push the slider upward to uncover the refilling port and insert a dropper containing fresh 3.33M potassium chloride (KCI) solution. The filling solution should reach the bottom of the refilling port.

 If the filling solution inside the reference chamber gets contaminated with sample

or microbial growth or the reading is drifting, change the filling solution. Tilt the pH electrode, uncover the refilling port, and draw out the old solution using a dropper before refilling it with fresh 3.33M KCI solution.

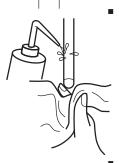
Conditioning


Nowadays, combination and 3-in-1 pH electrodes are commonly available. Both types of pH electrodes consist of glass electrode and reference electrode built in one body, but the latter is integrated with temperature sensor for detecting the temperature of the solution being measured.

The glass electrode has a silver-based electrical wire suspended in a neutral solution with KCl contained inside a special glass. The surface of the glass bulb or membrane at the tip of the electrode must be hydrated to function properly. This can be accomplished by immersing the glass membrane in an aqueous solution, where a hydrated layer that is responsible for the pH response of the glass, is developed.

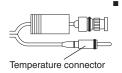
Another component of the pH electrode that must remain hydrated is the junction of the reference electrode. The junction is made of porous material such as ceramic or sintered polyethylene, which allows filling solution of the electrode to leak into the solution being measured. Keeping the reference junction hydrated will prevent precipitation of KCI from the filling solution which may clog it and cause erratic or slow electrode response.

All pH electrodes come with white protective cap. A sponge wet with pure water is positioned at the bottom of the cap to keep the glass membrane and junction moist. If you find KCl salts formed on the junction or refilling port of your pH electrode, simply rinse off using clean water. This KCl creep from the filling solution is normal.



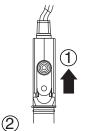
- A dry pH electrode will give inaccurate reading in pH measurement. Condition a dry pH electrode by soaking the glass membrane and junction in pH 7.00, 4.01 buffer, or tap water for at least 1 hour to regenerate the hydrated layer. Note: High salt solutions such as 3.33M KCl and the like are not recommended for conditioning our pH electrodes. After conditioning, rinse the pH electrode with clean water and proceed with calibration.
- Never touch the glass membrane with fingers as oil or dirt may coat the glass and interfere with measurement.

Calibration and Measurement

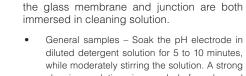

If a liquid-filled pH electrode is in use, the refilling port must be uncovered and the filling solution level must be higher than the pH buffer or sample level. These conditions will ensure smooth outward flow of filling solution through the junction during calibration and measurement.

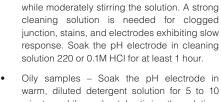
Before and after measurement, rinse the pH electrode with clean water and/or with a portion of the next solution to be measured and blot with soft lint-free tissue to remove excess water or solution. Rinsing between measurements prevents contamination by carry-over on the electrodes. Avoid wiping or rubbing as this can scratch the glass membrane, remove the hydrated layer, and cause static charge, resulting in inaccurate pH readings.

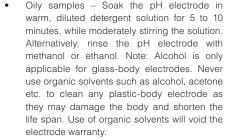
Calibrate frequently using at least two fresh pH buffers that bracket the expected sample pH value. Make sure that the glass membrane and junction of pH electrode are both immersed in pH buffer or sample.

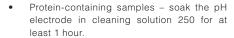

To compensate for temperate effect on pH, use either 3-in-1 pH electrode or combination pH electrode and temperature probe. If temperature probe is not available, check the solution temperature using a calibrated thermometer and input the reading into the meter.

- Stir pH buffers and sample at same rate. Stirring provides representative pH value of a solution and faster electrode response. If stirring is not possible due to measurement noise, limited sample volume or other reasons, it may be abandoned in both calibration and measurement.
- There is a wide selection of pH electrodes and each model is designed to suit specific applications. Choose the best pH electrode suitable for your sample.

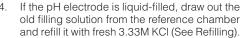

Cleaning

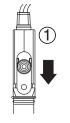

A clean, hydrated glass membrane and free-flowing junction are necessary in performing an accurate measurement of pH. The choice of cleaning solution should effectively remove all contaminants based on sample tested without damaging your pH electrode.





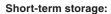
If the pH electrode is liquid-filled, uncover the

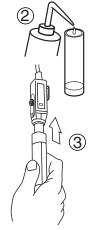



5. Condition the pH electrode (See Conditioning).

If calibration with fresh pH buffers failed repeatedly and cleaning failed to restore the performance, replace the pH electrode with a new one.

Storage


pH electrodes must be clean before they are stored for any length of time.


If the pH electrode is liquid-filled, cover the refilling port with the slider to prevent evaporation of filling solution.

2. Wash the protective cap with clean water to wet the sponge and remove KCI salts.

3. Insert the pH electrode into the protective cap with wet sponge. The water will not dissipate easily as the cap fit snugly on the electrode body. This environment is enough to keep the glass membrane and junction moist. It is not necessary to fill the cap with clean water and soak the pH electrode tip.

Between measurements, the pH electrode can be soaked in pH 7.00 buffer or clean water (e.g., tap, distilled or deionized).

With over 60 years of engineering excellence, HORIBA's diverse range of water quality analyzers and electrodes are ideal for everyday laboratory needs through to the most demanding of applications. Visit our website for a wealth of useful information and water quality measurement tips to help you obtain the best results in your work.

Benchtop Meters

Developed using extensive feedback from users, our new LAQUA meters deliver the best solution for water quality analysis. Our LAQUA website features an online 'Selection Guide' to enable you to find the perfect LAQUA meter and electrode for your need.

Handheld Meters

In the lab, in the field or anywhere you need it. LAQUA Handheld meters are designed for use with one hand and with an IP67 waterproof rating and shockresistant casing. Meters can be used for long periods, even in dark places, making it ideal for field measurements in rivers and lakes.

Pocket Meters

Analyzing water quality is simplified when using our LAQUAtwin range of meters. Designed to produce accurate and reliable results. Anyone, anywhere, at any time can measure samples easily with a LAQUAtwin meter. See just how good they are at our website.

Application Notes

LAQUAtwin pocket meters offer quick and convenient alternative to analyze important parameters with high accuracy. Several application notes are available at (http://goo.gl/znwE6j) detailing the use of LAQUAtwin and the results achieved for the respective applications. Additional application notes will be added when available.

RoHS

- The contents of this catalog are subject to change without prior notice, and without any subsequent liability
- The color of the actual products may differ from the color pictured in this catalog due to printing limitations.
- . It is strictly forbidden to copy the content of this catalog in part or in full.
- All brand names, product names and service names in this catalog are trademarks or registered trademarks
- . Windows is a registered trademark of Microsoft Corporation in the United States and other countries

HORIBA Instruments (Singapore) Pte. Ltd. 83 Science Park Drive, #02-02A, The Curie, Singapore 118258 Phone: 65 6908-9660 Fax: 65 6745-8155 e-mail: laqua@horiba.com

■ Europe, Middle East, & Africa

HORIBA UK Limited Kyoto Close, Moulton Park, Northampton NN3 6FL Phone: +44 1604 642500 e-mail: waterquality@horiba.com

Americas

HORIBA Instruments Incorporated 9755 Research Drive, Irvine, California 92618 USA Phone: +1 949 250 4811 Fax: +1 949 250 0924, +1 949 468 1890 e-mail: labinfo@horiba.com

Brochure HEA-10-2019A

